# 2. Dot Product and Cross Product

In this lecture, we will discuss

- The Dot Product
  - Definition and Properties
  - Geometric interpretation
  - Test for orthogonality of vectors
  - Angle between vectors
  - Orthonormal set of vectors
  - Vector expressed in terms of orthogonal vectors
- The Cross Product
  - Definition and Properties
  - Geometric interpretation
  - Area of the parallelogram spanned by two vectors
  - Volume of the parallelepiped spanned by three vectors

# **The Dot Product**

### **Definition. Dot Product**

Let  $\mathbf{v}=(v_1,\ldots,v_n)$  and  $oldsymbol{w}=(w_1,\ldots,w_n)$  be vectors in  $\mathbb{R}^n,n\geq 2$ . Then

$$\mathbf{v}\cdot\mathbf{w}=v_1w_1+\dots+v_nw_n$$
. E R

In particular, if  $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ , then

$$\mathbf{v} \cdot \mathbf{w} = (v_1 \mathbf{i} + v_2 \mathbf{j}) \cdot (w_1 \mathbf{i} + w_2 \mathbf{j}) = v_1 w_1 + v_2 w_2,$$

and

$$\mathbf{v} \cdot \mathbf{w} = (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}) \cdot (w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}) = v_1 w_1 + v_2 w_2 + v_3 w_3$$

if  $\mathbf{v}$  and  $\mathbf{w}$  are vectors in  $\mathbb{R}^3$ .

#### **Theorem 1. Properties of the Dot Product**

Assume that  ${f u},{f v}$ , and  ${f w}$  are vectors in  ${\Bbb R}^n$  (for  $n\geq 2$  ), and lpha is a real number. Then

- $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$  (commutative)
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$  (distributive with respect to addition)
- $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (\alpha \mathbf{v})$  (distributive with respect to scalar multiplication)
- $\mathbf{0} \cdot \mathbf{v} = 0$  (**0** is the zero vector)
- $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ .
- If  ${f v}$  and  ${f w}$  are parallel, then  ${f v}\cdot{f w}=\|{f v}\|\|{f w}\|$  if  ${f v}$  and  ${f w}$  have the same direction,
- and  $\mathbf{v} \cdot \mathbf{w} = -\|\mathbf{v}\| \|\mathbf{w}\|$  if they have opposite directions.

Theorem 2. Geometric Version of the Dot Product Let  ${\bf v}$  and  ${\bf w}$  be vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3.$  Then

$$\mathbf{v}\cdot\mathbf{w} = \|\mathbf{v}\|\|\mathbf{w}\|\cos heta,$$

where  $\theta$  is the angle between **v** and **w**.

Outline of the proof:  
- If 
$$\vec{v}$$
 or  $\vec{w}$  is  $\vec{v}$ , then both sides of the eqn are 0  
- If  $\vec{v}$  and  $\vec{w}$  are parallel  $(\theta=0, \text{ or }\pi)$ , it's easy to show  
 $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \frac{\cos \theta}{10r - 1.if}$   
- If  $\vec{v} \neq \vec{v}$ ,  $\vec{w} \neq \vec{v}$ , and  $0 < \theta < \pi$ .  
Law of cosine :  $||\vec{v} - \vec{w}||^2 = ||\vec{v}||^2 + ||\vec{w}||^2 - 2||\vec{v}|| \cdot ||\vec{w}||^2 - 2|\vec{v} \cdot \vec{w} + ||\vec{w}||^2$   
Property of dot product :  $||\vec{v} - \vec{w}||^2 = (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) = ||\vec{v}||^2 - 2\vec{v} \cdot \vec{w} + ||\vec{w}||^2$   
Compare the RHS of the equations, we get  $\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cos \theta$ .

# **Theorem 3. Test for Orthogonality of Vectors**

Let  ${f v}$  and  ${f w}$  be nonzero vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ . Then  ${f v}\cdot{f w}=0$  if and only if  ${f v}$  and  ${f w}$  are orthogonal.

### **Definition. Orthonormal Set of Vectors**

Vectors  $\mathbf{v}_1, \ldots, \mathbf{v}_k$  (where  $k \ge 2$ ) in  $\mathbb{R}^n, n \ge 2$  are said to form an orthonormal set if they are of unit length and each vector in the set is orthogonal to the others.

### **Theorem 4. Angle Between Vectors**

Let  ${f v}$  and  ${f w}$  be nonzero vectors in  ${\Bbb R}^2$  or  ${\Bbb R}^3.$  Then

$$\cos heta = rac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|},$$

where  $\theta$  is the angle between  $\mathbf{v}$  and  $\mathbf{w}$ .

**Example 1.** Find the angle heta between the vectors  $\mathbf{v} = (2, 1, -1)$  and  $\mathbf{w} = (3, -4, 1)$ .

ANS: Since 
$$\vec{v} \cdot \vec{w} = 2 \times 3 - l \times 4 - l \times l = l$$
  

$$|\vec{v}|| = \sqrt{2^2 + l^2 + l^2} = \sqrt{6}$$

$$|\vec{w}|| = \sqrt{3^2 + 4^2 + l^2} = \sqrt{26}$$

$$\text{then} \quad \cos\theta = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}|| \cdot |\vec{w}||} = \frac{l}{\sqrt{6} \cdot \sqrt{26}} = \frac{l}{2\sqrt{29}}$$

$$\approx 0.08$$

$$\Rightarrow \theta \approx l.491 \text{ rad}$$

# Theorem 5. Vector Expressed in Terms of Orthogonal Vectors

Let  ${f v}$  and  ${f w}$  be (nonzero) orthogonal vectors in  ${\Bbb R}^2$  and let  ${f a}$  be any vector in  ${\Bbb R}^2$ . Then

 $\mathbf{a} = a_{\mathbf{v}}\mathbf{v} + a_{\mathbf{w}}\mathbf{w},$ 

where  $a_{\mathbf{v}} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$  is the component of  $\mathbf{a}$  in the direction of  $\mathbf{v}$  and  $a_{\mathbf{w}} = \frac{\mathbf{a} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$  is the component of  $\mathbf{a}$  in the direction of  $\mathbf{w}$  (or in the direction orthogonal to  $\mathbf{v}$ ).

Special case : Let 
$$\vec{v} = \vec{i} = (1,0)$$
,  $\vec{w} = \vec{j} = (0,1)$   
Then  $\vec{\alpha} = \alpha, \vec{i} + \alpha_s \vec{j}$ . if  $\vec{\alpha} = (\alpha_1, \alpha_3)$   
when  $\alpha_1 = \vec{\alpha} \cdot \vec{i}$ ,  $\alpha_s = \vec{\alpha} \cdot \vec{j}$   
"Dot products give the value of the coordinates"  
Proof : From Linear algebra, we know  $\vec{\alpha}$  can be written  
as a linear combination of two mutually  
orthogonal vectors.  
 $\vec{\alpha} = \alpha_{\vec{v}}\vec{v} + \alpha_{\vec{w}}\vec{w}$  for some  $\alpha_{\vec{v}}, \alpha_{\vec{w}} \in \mathbb{R}$ .  
Take the dot product of  $\vec{\alpha} = \alpha_{\vec{v}}\vec{v} + \alpha_{\vec{w}}\vec{w}$  with  $\vec{v}$ ,  
We have  
 $\vec{\alpha} \cdot \vec{v} = \alpha_{\vec{v}}\vec{v} \cdot \vec{v} + \alpha_{\vec{w}}\vec{w} \cdot \vec{v}$   
Thus  
 $\alpha_{\vec{v}} = \frac{\vec{\alpha} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}$ 

**Example 2.** Check that  $\mathbf{v} = (1, 2)$ , and  $\mathbf{w} = (2, -1)$  are mutually orthogonal vectors and express  $\mathbf{a} = (4, 3)$  in terms of  $\mathbf{v}$ , and  $\mathbf{w}$ .



Since 
$$\vec{v} \cdot \vec{w} = |x_2 - 2x| = 0$$
  
 $\vec{v} \perp \vec{w}$   
By the above theorem  
 $\vec{a} = a \vec{v} \cdot \vec{v} + a \vec{w} \cdot \vec{w}$   
where  $a \vec{v} = \frac{\vec{a} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} = \frac{|x_4 + 2x_3|}{5} = 2$   
 $a \vec{w} = \frac{\vec{a} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} = \frac{2x_4 - 3x_1}{5} = 1$   
Thus  $\vec{a} = 2\vec{v} + \vec{w}$ 



**Example 3.** Let  $\mathbf{u} = (-2, 3, -1)$  and  $\mathbf{v} = (-1, 1, 1)$ . Compute

(1) the projection of  $\boldsymbol{u}$  along  $\boldsymbol{v}$  , and

(2) the projection of  ${f u}$  orthogonal to  ${f v}.$ 



# **The Cross Product**

# **Definition Cross Product**

The cross product of two vectors  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$  and  $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$  is the vector  $\mathbf{c} = \mathbf{v} \times \mathbf{w}$  in  $\mathbb{R}^3$  defined by

$$egin{aligned} \mathbf{c} &= \mathbf{v} imes \mathbf{w} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \ \end{pmatrix} = \mathbf{i} egin{bmatrix} v_2 & v_3 \ w_2 & w_3 \ \end{pmatrix} - \mathbf{j} egin{bmatrix} v_1 & v_3 \ w_1 & w_3 \ \end{pmatrix} + \mathbf{k} egin{bmatrix} v_1 & v_2 \ w_1 & w_2 \ \end{pmatrix} \ &= (v_2 w_3 - v_3 w_2) \mathbf{i} - (v_1 w_3 - v_3 w_1) \mathbf{j} + (v_1 w_2 - v_2 w_1) \mathbf{k} \end{aligned}$$

**Example 4.** Compute  $\mathbf{v} \times \mathbf{w}$  and  $\mathbf{w} \times \mathbf{v}$ , if  $\mathbf{v} = \mathbf{i} - 2\mathbf{k}$  and  $\mathbf{w} = -2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ .

ANS:  

$$\vec{v} \times \vec{w} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ i & 0 & -2 \\ -2 & 3 & -4 \end{vmatrix} = \vec{v} \begin{vmatrix} 0 & -2 \\ 3 & -4 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & -2 \\ -2 & -4 \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & 0 \\ -2 & 3 \end{vmatrix}$$
  
 $= 6\vec{v} + 8\vec{j} + 3k$ 

Similarly.  

$$\vec{w} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 3 & -4 \end{vmatrix} = -6\vec{i} - 8\vec{j} - 3\vec{k}$$
  
 $\begin{vmatrix} 1 & 0 & -2 \end{vmatrix}$   
Note  $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$ . In general, it's true.

### **Theorem 6. Properties of the Cross Product**

Let  ${f u},{f v}$ , and  ${f w}$ , be vectors in  ${\Bbb R}^3$  and let lpha be any real number. The cross product satisfies

- $\mathbf{v} imes \mathbf{w} = -\mathbf{w} imes \mathbf{v}$  (anticommutativity),
- $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
- $(\mathbf{u} + \mathbf{v}) imes \mathbf{w} = \mathbf{u} imes \mathbf{w} + \mathbf{v} imes \mathbf{w}$  (distributivity with respect to the sum).
- $\mathbf{v} imes \mathbf{v} = \mathbf{0}$  ( $\mathbf{0}$  is the zero vector in  $\mathbb{R}^3$ )
- $\alpha(\mathbf{v} \times \mathbf{w}) = (\alpha \mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (\alpha \mathbf{w}).$

By the definitions of dot product and cross product, we have

Lemma 1. Let  $\mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, v_2, v_3)$ , and  $\mathbf{w} = (w_1, w_2, w_3)$ , then $\mathbf{u} \cdot (\mathbf{v} imes \mathbf{w}) = egin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$ 

Let A be a matrix with rows formed by  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$ . By **Lemma 1**, we know  $det(A) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ .

### **Theorem 7. Geometric Properties of the Cross Product**

Let  ${f v}$  and  ${f w}$  be vectors in  ${\Bbb R}^3$ . Then

(a) The cross product  $(\mathbf{v} imes \mathbf{w})$  is a vector orthogonal to both  $\mathbf{v}$  and  $\mathbf{w}$ .

(b) The magnitude of  $\mathbf{v} \times \mathbf{w}$  is given by  $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$ , where  $\theta$  denotes the angle between  $\mathbf{v}$  and  $\mathbf{w}$ .

## **Right-hand rule**

- Place your right hand in the direction of **v**, and curl your fingers from **v** to **w** through the angle θ (remember that θ is the smaller of the two angles formed by the lines with directions **v** and **w** ).
- Your thumb then points in the direction of  $\mathbf{v}\times\mathbf{w}.$





**Question.** Let **v** and **w** be vectors in  $\mathbb{R}^3$  and  $\theta$  be the angle between them, can you express  $\tan \theta$  using the dot and cross products of **v** and **w**?

ANS: Since 
$$\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos\theta$$
  
 $||\vec{v} \times \vec{w}|| = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin\theta$   
 $+ \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{11\vec{v} \times \vec{w}}{||\vec{v}|| \cdot |\vec{w}||} = \frac{11\vec{v} \times \vec{w}}{|\vec{v} \cdot \vec{w}||}$ 

#### Theorem 9. Area of the Parallelogram Spanned by Two Vectors

Let  $\mathbf{v}$  and  $\mathbf{w}$  be nonzero, nonparallel vectors in  $\mathbb{R}^3$ . The magnitude  $\|\mathbf{v} \times \mathbf{w}\|$  is the real number equal to the area of the parallelogram spanned by  $\mathbf{v}$  and  $\mathbf{w}$ .



**Exercise 5.** Find the area of the triangle with vertices (0, 2, 1), (3, 3, 3), and (-1, 4, 2).



**ANS.** Computing the area of the parallelogram with vertices located at A(0, 2, 1), B(3, 3, 3) and C(-1, 4, 2) and then dividing by 2 will yield the area of the triangle in question.

Let **v** and **w** be the vectors determined by the directed line segments  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$  respectively. Then **v** = (3, 1, 2) and **w** = (-1, 2, 1) and hence

$$\mathbf{v} imes \mathbf{w} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 3 & 1 & 2 \ -1 & 2 & 1 \end{bmatrix} = (1-4, -3-2, 6+1) = (-3, -5, 7).$$

Therefore, the area of the triangle is  $\|\mathbf{v} \times \mathbf{w}\|/2 = \|(-3, -5, 7)\|/2 = \sqrt{83}/2$ .

### Volume of the parallelepiped spanned by three vectors

Let  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$  be nonzero vectors in  $\mathbb{R}^3$  such that  $\mathbf{v}$  and  $\mathbf{w}$  are not parallel (so that they span a parallelogram) and such that  $\mathbf{u}$  does not belong to the plane spanned by  $\mathbf{v}$  and  $\mathbf{w}$ .



- $\|\mathbf{v} \times \mathbf{w}\|$  is the area of the parallelogram spanned by  $\mathbf{v}$  and  $\mathbf{w}$ .
- If  $heta < \pi/2$ , the height h of the parallelepiped is  $h = \| {f u} \| \cos heta.$
- If  $\theta > \pi/2$ , then  $h = \|\mathbf{u}\| \cos(\pi \theta) = -\|\mathbf{u}\| \cos \theta$ . In either case,  $h = \|\mathbf{u}\| |\cos \theta|$ .
- Therefore,

 $|\mathbf{u} \cdot (\mathbf{v} imes \mathbf{w})| = \|\mathbf{v} imes \mathbf{w}\| \|\mathbf{u}\| || \cos heta ||$ 

is the volume of the parallelepiped spanned by  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$ .

• Let A be the matrix with rows as  $\mathbf{u}, \mathbf{v}$ , and  $\mathbf{w}$ . By **Lemma 1**, we know

$$\det(A) = \mathbf{u} \cdot (\mathbf{v} imes \mathbf{w}) = egin{bmatrix} u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{bmatrix}$$

- Thus, we have  $|\det(A)| = \operatorname{vol}(P)$ .
- This is often refered as "the absolute value of the determinate gives the value of the volumn".

### **Remark. Volume and Determinate**

- The notion of parallelepiped can be generalized in  $\mathbb{R}^n$  and so does the notion of the volume of the parallelepiped. The equation  $|\det(A)| = \operatorname{vol}(P)$  still holds once those concepts are properly generalized.
- The proof of this is not trivial. You can refer to <u>this webpage</u> if you are curious about it.